
6

Subscripting

6.1 Basics of Subscripting

For objects that contain more than one element (vectors, matrices, arrays,
data frames, and lists), subscripting is used to access some or all of those
elements. Besides the usual numeric subscripts, R allows the use of character
or logical values for subscripting. Subscripting operations are very fast and
efficient, and are often the most powerful tool for accessing and manipulating
data in R. The next subsections describe the different type of subscripts sup-
ported by R, and later sections will address the issues of using subscripts for
particular data types.

6.2 Numeric Subscripts

Like most computer languages, numeric subscripts can be used to access the
elements of a vector, array, or list. The first element of an object has sub-
script 1; subscripts of 0 are silently ignored. In addition to a single number, a
vector of subscripts (or, for example, a function call that returns a vector of
subscripts) can be used to access multiple elements. The colon operator and
the seq function are especially useful here; see Section 2.8.1 for details.

Negative subscripts in R extract all of the elements of an object except the
ones specified in the negative subscript; thus, when using numeric subscripts,
subscripts must be either all positive (or zero) or all negative (or zero).

6.3 Character Subscripts

If a subscriptable object is named, a character string or vector of charac-
ter strings can be used as a subscript. Negative character subscripts are not
permitted; if you need to exclude elements based on their names, the grep

76 6 Subscripting

function (Section 7.7) can be used. Like other forms of subscripting, a call to
any function that returns a character string or vector of strings can be used
as a subscript.

6.4 Logical Subscripts

Logical values can be used to selectively access elements of a subscriptable
object, provided the size of the logical object is the same as the object (or
part of the object) that is being subscripted. Elements corresponding to TRUE
values in the logical vector will be included, and objects corresponding to
FALSE values will not. Logical subscripting provides a very powerful and simple
way to perform tasks that might otherwise require loops, while increasing the
efficiency of your program as well. The first step in understanding logical
subscripts is to examine the result of some logical expressions. Suppose we
have a vector of numbers, and we’re interested in those numbers which are
more than 10. We can see where those numbers are with a simple logical
expression.

> nums = c(12,9,8,14,7,16,3,2,9)
> nums > 10
[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

Like most operations in R, logical operators are vectorized; applying a logical
subscript to a vector or an array will produce an object of the same size and
shape as the original object. In this example, we applied a logical operation
to a vector of length 10, and it returned a logical vector of length 10, with
TRUE in each position where the value in the original vector was greater than
10, and FALSE elsewhere. If we use this logical vector for subscripting, it will
extract the elements for which the logical vector is true:

> nums[nums>10]
[1] 12 14 16

For the closely related problem of finding the indices of these elements, R
provides the which function, which accepts a logical vector, and returns a
vector containing the subscripts of the elements for which the logical vector
was true:

> which(nums>10)
[1] 1 4 6

In this simple example, the operation is the equivalent of

> seq(along=nums)[nums > 10]
[1] 1 4 6

Logical subscripts allow for modification of elements that meet a particular
condition by using an appropriately subscripted object on the left-hand side

6.5 Subscripting Matrices and Arrays 77

of an assignment statement. If we wanted to change the numbers in nums that
were greater than 10 to zero, we could use

> nums[nums > 10] = 0
> nums
[1] 0 9 8 0 7 0 3 2 9

6.5 Subscripting Matrices and Arrays

Multidimensional objects like matrices introduce a new type of subscripting:
the empty subscript. For a multidimensional object, subscripts can be pro-
vided for each dimension, separated by commas. For example, we would refer
to the element of a matrix x in the fourth row and third column as x[4,3]. If
we omit, say, the second subscript and refer to x[4,], the subscripting oper-
ation will apply to the entire dimension that was omitted; in this case, all of
the columns in the fourth row of x. Thus, accessing entire rows and columns
is simple; just leave out the subscript for the dimension you’re not interested
in. The following examples show how this can be used:

> x = matrix(1:12,4,3)
> x

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> x[,1]
[1] 1 2 3 4
> x[,c(3,1)]

[,1] [,2]
[1,] 9 1
[2,] 10 2
[3,] 11 3
[4,] 12 4
> x[2,]
[1] 2 6 10
> x[10]
[1] 10

Pay careful attention to the last example, where a matrix is subscripted with
a single subscript. In this case, the matrix is silently treated like a vector
composed of all the columns of the matrix. While this may be useful in cer-
tain situations, you should generally use two subscripts when working with
matrices.

78 6 Subscripting

Notice that by manipulating the order of subscripts, we can create a sub-
matrix with rows or columns in whatever order we want. This fact coupled
with the order function provides a method to sort a matrix or data frame
in the order of any of its columns. The order function returns a vector of
indices that will permute its input argument into sorted order. Perhaps the
best way to understand order is to consider that x[order(x)] will always be
identical to sort(x). Suppose we wish to sort the rows of the stack.x matrix
by increasing values of the Air.Flow variable. We can use order as follows:

> stack.x.a = stack.x[order(stack.x[,’Air.Flow’]),]
> head(stack.x.a)

Air.Flow Water.Temp Acid.Conc.
15 50 18 89
16 50 18 86
17 50 19 72
18 50 19 79
19 50 20 80
20 56 20 82

Note the comma after the call to order, indicating that we wish to rearrange
all the columns of the matrix in the order of the specified variable. To reverse
the order of the resulting sort, use the decreasing=TRUE argument to order.
Although the order function accepts multiple arguments to allow ordering
by multiple variables, it is sometimes inconvenient to have to list each such
argument in the function call. For example, we might want a function which
can accept a variable number of ordering variables, and which will then call
order properly, regardless of how many arguments are used. Problems like
this can be easily handled in R with the do.call function. The idea behind
do.call is that it takes a list of arguments and prepares a call to a function
of your choice, using the list elements as if they had been passed to the func-
tion as individual arguments. The first argument to do.call is a function or
a character variable containing the name of a function, and the only other
required argument is a list containing the arguments that should be passed
to the function. Using do.call, we can write a function to sort the rows of a
data frame by any number of its columns:

sortframe = function(df,...)df[do.call(order,list(...)),]

(When used inside a function allowing multiple unnamed arguments, the ex-
pression list(...) creates a list containing all the unnamed arguments.)
For example, to sort the rows of the iris data frame by Sepal.Length and
Sepal.Width, we could call sortframe as follows:

6.5 Subscripting Matrices and Arrays 79

> with(iris,sortframe(iris,Sepal.Length,Sepal.Width))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14 4.3 3.0 1.1 0.1 setosa

9 4.4 2.9 1.4 0.2 setosa

39 4.4 3.0 1.3 0.2 setosa

43 4.4 3.2 1.3 0.2 setosa

42 4.5 2.3 1.3 0.3 setosa

4 4.6 3.1 1.5 0.2 setosa

48 4.6 3.2 1.4 0.2 setosa

7 4.6 3.4 1.4 0.3 setosa

23 4.6 3.6 1.0 0.2 setosa

. . .

Another common operation, reversing the order of rows or columns of a
matrix , can be achieved through the use of a call to the rev function as either
the row or column subscript. For example, to create a version of the iris data
frame whose rows are in the reverse order of the original, we could use

> riris = iris[rev(1:nrow(iris)),]

> head(riris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

150 5.9 3.0 5.1 1.8 virginica

149 6.2 3.4 5.4 2.3 virginica

148 6.5 3.0 5.2 2.0 virginica

147 6.3 2.5 5.0 1.9 virginica

146 6.7 3.0 5.2 2.3 virginica

145 6.7 3.3 5.7 2.5 virginica

By default, subscripting operations reduce the dimensions of an array
whenever possible. The result of this is that functions will sometimes fail
when passed a single row or column from a matrix, since subscripting can
potentially return a vector, even though the subscripted object is an array.
To prevent this from happening the array nature of the extracted part can
be retained with the drop=FALSE argument, which is passed along with the
subscripts of the array. This example shows the effect of using this argument:

> x = matrix(1:12,4,3)
> x[,1]
[1] 1 2 3 4
> x[,1,drop=FALSE]

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4

80 6 Subscripting

Note the “extra” comma inside the subscripting brackets – drop=FALSE is
considered an argument to the subscripting operation. drop=FALSE may also
prove useful if a named column loses its name when passed to a function.

Using subscripts, it’s easy to selectively access any combination of rows
and/or columns that you need. Suppose we want to find all of the rows in x
for which the first column is less than 3. Since we want all the elements of
these rows, we will use an empty subscript for the column (second) dimension.
Once again it may be instructive to examine the subscript used for the first
dimension:

> x[,1] < 3
[1] TRUE TRUE FALSE FALSE
> x[x[,1] < 3,]

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10

The logical vector x[,1] < 3 is of length 4, the number of rows in the matrix;
thus, it can be used as a logical subscript for the first dimension to specify
the rows we’re interested in. By using the expression with an empty second
subscript, we extract all of the columns for these rows.

Matrices allow an additional special form of subscripting. If a two-column
matrix is used as a subscript for a matrix, the elements specified by the row
and column combination of each line will be accessed. This makes it easy
to create matrices from tabular values. Consider the following matrix, whose
first two columns represent a row and column number, and whose last column
represents a value:

> mat = matrix(scan(),ncol=3,byrow=TRUE)
1: 1 1 12 1 2 7 2 1 9 2 2 16 3 1 12 3 2 15
19:
Read 18 items
> mat

[,1] [,2] [,3]
[1,] 1 1 12
[2,] 1 2 7
[3,] 2 1 9
[4,] 2 2 16
[5,] 3 1 12
[6,] 3 2 15

The row and column numbers found in the first two columns describe a matrix
with three rows and two columns; we first create a matrix of missing values
to hold the result, and then use the first two columns of the matrix as the
subscript, with the third column being assigned to the new matrix:

> newmat = matrix(NA,3,2)
> newmat[mat[,1:2]] = mat[,3]

6.6 Specialized Functions for Matrices 81

> newmat
[,1] [,2]

[1,] 12 7
[2,] 9 16
[3,] 12 15

Any elements whose values were not specified will retain their original values,
in this case a value of NA. See the discussion of xtabs in Section 8.1 for an
alternative method of converting tabulated data into an R table.

6.6 Specialized Functions for Matrices

Two simple functions, while not very useful on their own, extend the power of
subscripting for matrices based on the relative positions of matrix elements.
The row function, when passed a matrix, returns a matrix of the identical
dimensions with the row numbers of each element, while col plays the same
role, but uses the column numbers. For example, consider an artificial contin-
gency table showing the results of two different classification methods for a
set of objects:

> method1 = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
> method2 = c(1,2,2,3,2,2,1,3,3,3,2,4,1,4,4,3)
> tt = table(method1,method2)
> tt

method2
method1 1 2 3 4

1 1 2 1 0
2 1 2 1 0
3 0 1 2 1
4 1 0 1 2

Suppose we want to extract all the off-diagonal elements. One way to think
about these elements is that their row number and column numbers are dif-
ferent. Expressed using the row and col functions, this is equivalent to

> offd = row(tt) != col(tt)
> offd

[,1] [,2] [,3] [,4]
[1,] FALSE TRUE TRUE TRUE
[2,] TRUE FALSE TRUE TRUE
[3,] TRUE TRUE FALSE TRUE
[4,] TRUE TRUE TRUE FALSE

Since this matrix is the same size as tt, it can be used as a subscript to extract
the off-diagonal elements:

> tt[offd]
[1] 1 0 1 2 1 0 1 1 1 0 0 1

82 6 Subscripting

So, for example, we could calculate the sum of the off-diagonal elements as

> sum(tt[offd])

The R functions lower.tri and upper.tri use this technique to return a
logical matrix useful in extracting the lower or upper triangular elements of
a matrix. Each accepts a diag= argument; setting this argument to TRUE will
set the diagonal elements of the matrix to TRUE along with the off-diagonal
ones.

The diag function can be used to extract or set the diagonal elements of
a matrix, or to form a matrix which has specified values on the diagonals.

6.7 Lists

Lists are the most general way to store a collection of objects in R, because
there is no limitation on the mode of the objects that a list may hold. Al-
though it hasn’t been explicitly stated, one rule of subscripting in R is that
subscripting will always return an object of the same mode as the object being
subscripted. For matrices and vectors, this is completely natural, and should
never cause confusion. But for lists, there is a subtle distinction between part
of a list, and the object which that part of the list represents. As a simple
example, consider a list with some names and some numbers:

> simple = list(a=c(’fred’,’sam’,’harry’),b=c(24,17,19,22))
> mode(simple)
[1] "list"
> simple[2]
$b
[1] 24 17 19 22

> mode(simple[2])
[1] "list"

Although it looks as if simple[2] represents the vector, it’s actually a list
containing the vector; operations that would work on the vector will fail on
this list:

> mean(simple[2])
[1] NA
Warning message:
argument is not numeric or logical:

returning NA in: mean.default(simple[2])

R provides two convenient ways to resolve this issue. First, if the elements
of the list are named, the actual contents of the elements can be accessed by
separating the name of the list from the name of the element with a dollar sign
($). So we could get around the previous problem by referring to simple[2]

6.8 Subscripting Data Frames 83

as simple$b. For interactive sessions, using the dollar sign notation is the
natural way to perform operations on the elements of a list.

For those situations where the dollar sign notation would be inappropriate
(for example, accessing elements through their index or through a name stored
in a character variable), R provides the double bracket subscript operator.
Double brackets are not restricted to respect the mode of the object they are
subscripting, and will extract the actual list element from the list. So in order
to find the mean of a numeric list element we could use any of these three
forms:

> mean(simple$b)
[1] 20.5
> mean(simple[[2]])
[1] 20.5
> mean(simple[[’b’]])
[1] 20.5

The key thing to notice is that in this case, single brackets will always
return a list containing the selected element(s), while double brackets will
return the actual contents of selected list element. This difference can be
visualized by printing the two different forms:

> simple[1]
$a
[1] "fred" "sam" "harry"

> simple[[1]]
[1] "fred" "sam" "harry"

The “$a” is an indication that the object being displayed is a list, with
a single element named a, not a vector. Notice that double brackets are
not appropriate for ranges of list elements; in these cases single brackets
must be used. For example, to access both elements of the simple list, we
could use simple[c(1,2)], simple[1:2], or simple[c(’a’,’b’)], but us-
ing simple[[1:2]] would not produce the expected result.

6.8 Subscripting Data Frames

Since data frames are a cross between a list and a matrix, it’s not surprising
that both matrix and list subscripting techniques apply to data frames. One
of the few differences regards the use of a single subscript; when a single
subscript is used with a data frame, it behaves like a list rather than a vector,
and the subscripts refer to the columns of the data frame, which are its list
elements.

When using logical subscripts with data frames containing missing values,
it may be necessary to remove the missing values before the logical comparison

84 6 Subscripting

is made, or unexpected results may occur. For example, consider this small
data frame where we want to find all the rows where b is greater than 10:

> dd = data.frame(a=c(5,9,12,15,17,11),b=c(8,NA,12,10,NA,15))
> dd[dd$b > 10,]

a b
NA NA NA
3 12 12
NA.1 NA NA
6 11 15

Along with the desired results are additional rows wherever a missing value
appeared in b. The problem is easily remedied by using a more complex logical
expression that insures missing values will generate a value of FALSE instead
of NA:

> dd[!is.na(dd$b) & dd$b > 10,]
a b

3 12 12
6 11 15

This situation is so common that R provides the subset function which ac-
cepts a data frame, matrix or vector, and a logical expression as its first two
arguments, and which returns a similar object containing only those elements
that meet the condition of the logical expression. It insures that missing values
don’t get included, and, if its first argument is a data frame or matrix with
named columns, it also resolves variable names inside the logical expression
from the object passed as the first argument. So subset could be used for the
previous example as follows:

> subset(dd,b>10)
a b

3 12 12
6 11 15

Notice that it’s not necessary to use the data frame name when referring
to variables in the subsetting argument. A further convenience is offered by
the select= argument which will extract only the specified columns from
the data frame passed as the first argument. The argument to select= is a
vector of integers or variable names which correspond to the columns that are
to be extracted. Unlike most other functions in R, names passed through the
select= argument can be either quoted or unquoted. To ignore columns, their
name or index number can be preceded by a negative sign (-). For example,
consider the LifeCycleSavings data frame distributed with R. Suppose we
want to create a data frame containing the variables pop15 and pop75 for
those observations in the data frame for which sr is greater than 10. The
following expression will create the data frame:

> some = subset(LifeCycleSavings,sr>10,select=c(pop15,pop75))

6.8 Subscripting Data Frames 85

Since the select= argument works by replacing variable names with their cor-
responding column indices, ranges of columns can be specified using variable
names:

> life1 = subset(LifeCycleSavings,select=pop15:dpi)

will extract columns starting at pop15 and ending at dpi. Since these are the
first three columns of the data frame, an equivalent specification would be

> life1 = subset(LifeCycleSavings,select=1:3)

Similarly, we could create a data frame like LifeCycleSavings, but without
the pop15 and pop75 columns with expressions like the following:

> life2 = subset(LifeCycleSavings,select=c(-pop15,-pop75))

or

> life2 = subset(LifeCycleSavings,select=-c(2,3))

Remember that the subset function will always return a new data frame,
matrix or vector, so it is not suited for modifying selected parts of a data
frame. In those cases, the basic subscripting operations described above must
be used.

